Propagation of Errors from Nuisance Parameters in qMRI

Mark D. Does, PhD Vanderbilt University

Propagation of Error From Parameter Constraints in Quantitative MRI: Example Application of Multiple Spin Echo T₂ Mapping

Christopher L. Lankford^{1,2} and Mark D. Does^{1,2,3,4}*

Magnetic Resonance in Medicine 79:673–682 (2018)

Quantitative MRI (qMRI): Overview

- Provide quantitative measures that are suitably:
 - Accurate
 - Precise
 - Efficient ullet
 - Robust
 - Useful

• The signal is a function of parameters,

Types of Parameters

 $s\left(q\right) = f\left(\beta, q\right)$

- The signal is a function of parameters,
 - independent parameters, <u>known</u> e.g., $T_{E}, T_{R}, ...$

 $s(q) = f(\beta, q)$ independent parameters

- The signal is a function of parameters,
 - independent parameters, known e.g., $T_{E}, T_{R}, ...$
 - model parameters, <u>unknown</u>

$s\left(q\right) = f\left(\beta, q\right)$ independent parameters model parameters

- The signal is a function of parameters,
 - independent parameters, known e.g., $T_{E}, T_{R}, ...$
 - model parameters, <u>unknown</u>
 - parameters of interest ullete.g., M_0, T_2, T_1, \ldots
 - freely fitted, $\beta_{\rm f}$

$s(q) = f(\beta, q)$ independent parameters model parameters

- The signal is a function of parameters,
 - independent parameters, known e.g., $T_{E}, T_{R}, ...$
 - model parameters, <u>unknown</u>
 - parameters of interest \bullet e.g., M_0, T_2, T_1, \ldots
 - freely fitted, $\beta_{\rm f}$
 - nuisance parameters ullete.g,. B₁, B₀, ...
 - may be constrained, $\beta_{\rm c}$ or fitted, $\beta_{\rm f}$

$s(q) = f(\beta, q)$ independent parameters model parameters

$$\beta = \begin{bmatrix} \beta_{\rm f} \\ \beta_{\rm c} \end{bmatrix}$$

• Objective: measure T₂ via multiple spin echo MRI

- Objective: measure T_2 via multiple spin echo MRI
- Signal Equation, $s(t_e) = EPG[t_e; M_0, T_2, \theta]$
- Model parameters of interest: M_0, T_2
- Nuisance parameter: θ

- Objective: measure T_2 via multiple spin echo MRI
- Signal Equation, $s(t_e) = EPG[t_e; M_0, T_2, \theta]$
- Model parameters of interest: M_0, T_2
- Nuisance parameter: θ

- Objective: measure T_2 via multiple spin echo MRI
- Signal Equation, $s(t_e) = EPG[t_e; M_0, T_2, \theta]$
- Model parameters of interest: M_0, T_2
- Nuisance parameter: θ

- Objective: measure T_2 via multiple spin echo MRI
- Signal Equation, $s(t_e) = EPG[t_e; M_0, T_2, \theta]$
- Model parameters of interest: M_0, T_2
- Nuisance parameter: θ
 - Constrain to an assumed or measured value
 - Jointly fit with other parameters

- Objective: measure T_2 via multiple spin echo MRI
- Signal Equation, $s(t_e) = EPG[t_e; M_0, T_2, \theta]$
- Model parameters of interest: M_0, T_2
- Nuisance parameter: θ
 - Constrain to an assumed or measured value
 - Jointly fit with other parameters
- What precision & accuracy in a measured $\hat{\theta}$ will result in a lower MSE of \hat{T}_2 c/w jointly fitting M_0, T_2, θ ?

• Three possible sources

- Three possible sources
 - noise (imprecision) in images

e

- Three possible sources
 - noise (imprecision) in images
 - noise (imprecision) in nuisance parameter measurement

- Three possible sources
 - noise (imprecision) in images
 - noise (imprecision) in nuisance parameter measurement
 - bias (inaccuracy) in nuisance parameter measurement (or assumption)

Term I: error from noise in images

• Cramér-Rao bound of variance (in the absence of β_c or if β_c are constrained perfectly)

 $\sigma_{\rm s}^2 \left(\mathbf{J}_{\beta_{\rm f}}^{\rm T} \mathbf{J}_{\beta_{\rm f}} \right)^{-1}$

Term I: error from noise in images

- Cramér-Rao bound of variance (in the absence of β_c or if β_c are constrained perfectly)
- J is the model jacobian
 - compute partial derivatives for a given set of q and β values
 - analytical or finite-difference

 $\epsilon_{\hat{\beta}_{f}}^{2} \approx \sigma_{s}^{2} \left(J_{\beta_{f}}^{T} J_{\beta_{f}}\right)^{-1} + \dots$ $\frac{\partial \bar{\beta}_{f} \left(\bar{\beta}_{c}\right)}{\partial \bar{\beta}_{c}} \Sigma_{\hat{\beta}_{c}} \frac{\partial \bar{\beta}_{f} \left(\bar{\beta}_{c}\right)^{T}}{\partial \bar{\beta}_{c}} + \dots$ $\left(\bar{\beta}_{f} \left(\bar{\beta}_{c}\right) - \beta_{f}\right) \left(\bar{\beta}_{f} \left(\bar{\beta}_{c}\right) - \beta_{f}\right)^{T}$

 $\sigma_{\rm s}^2 \left(\mathbf{J}_{\beta_{\rm f}}^{\rm T} \mathbf{J}_{\beta_{\rm f}} \right)^{-1}$

 $\mathbf{J}_{\beta_{\mathrm{f}}} = \begin{bmatrix} \frac{\partial s_{1}}{\partial \beta_{\mathrm{f},1}} & \dots & \frac{\partial s_{1}}{\partial \beta_{\mathrm{f},\mathrm{M}_{\mathrm{f}}}} \\ \vdots & \vdots \\ \frac{\partial s_{\mathrm{N}}}{\partial \beta_{\mathrm{f},1}} & \dots & \frac{\partial s_{\mathrm{N}}}{\partial \beta_{\mathrm{f},\mathrm{M}_{\mathrm{f}}}} \end{bmatrix}$

Term I: error from noise in images

- Cramér-Rao bound of variance (in the absence of β_c or if β_c are constrained perfectly)
- J is the model jacobian
 - compute partial derivatives for a given set of q and β values
 - analytical or finite-difference
- for T₂ example

 $\boldsymbol{\varepsilon}_{\hat{\boldsymbol{\beta}}_{\mathrm{f}}}^{\mathbf{2}} \approx \sigma_{\mathrm{s}}^{2} \left(\mathbf{J}_{\boldsymbol{\beta}_{\mathrm{f}}}^{\mathrm{T}} \mathbf{J}_{\boldsymbol{\beta}_{\mathrm{f}}} \right)^{-1}$ $\frac{\partial \bar{\boldsymbol{\beta}}_{\rm f}\left(\bar{\boldsymbol{\beta}}_{\rm c}\right)}{\partial \bar{\boldsymbol{\beta}}_{\rm c}} \boldsymbol{\Sigma}_{\hat{\boldsymbol{\beta}}_{\rm c}} \frac{\partial \bar{\boldsymbol{\beta}}_{\rm f}\left(\bar{\boldsymbol{\beta}}_{\rm c}\right)^{\rm T}}{\partial \bar{\boldsymbol{\beta}}_{\rm c}} + ...$ $\left(ar{oldsymbol{eta}}_{
m f}\left(ar{oldsymbol{eta}}_{
m c}
ight)-oldsymbol{eta}_{
m f}
ight)\left(ar{oldsymbol{eta}}_{
m f}\left(ar{oldsymbol{eta}}_{
m c}
ight)-oldsymbol{eta}_{
m f}
ight)^{
m T}$ $\sigma_{\rm s}^2 \left(\mathbf{J}_{\beta_{\rm f}}^{\rm T} \mathbf{J}_{\beta_{\rm f}} \right)^{-1}$ $\mathbf{J}_{\beta_{\mathrm{f}}} = \begin{bmatrix} \frac{\partial s_{1}}{\partial \beta_{\mathrm{f},1}} & \dots & \frac{\partial s_{1}}{\partial \beta_{\mathrm{f},M_{\mathrm{f}}}} \\ \vdots & \vdots \\ \frac{\partial s_{\mathrm{N}}}{\partial \beta_{\mathrm{f},1}} & \dots & \frac{\partial s_{\mathrm{N}}}{\partial \beta_{\mathrm{f},M_{\mathrm{f}}}} \end{bmatrix}$ $\partial \text{EPG}\left[t_{\text{e}}; M_{0}, T_{2}, \theta\right] / \partial M_{0}$ $\partial \text{EPG}\left[t_{e}; \dot{M}_{0}, T_{2}, \theta\right] / \partial T_{2}$

$\boldsymbol{\varepsilon}_{\hat{\boldsymbol{\beta}}_{\mathrm{f}}}^{\mathbf{2}} \approx \sigma_{\mathrm{s}}^{2} \left(\mathbf{J}_{\boldsymbol{\beta}_{\mathrm{f}}}^{\mathrm{T}} \mathbf{J}_{\boldsymbol{\beta}_{\mathrm{f}}} \right)^{-1} + \dots$ Term II: error from noise in nuisance $\frac{\partial \bar{\boldsymbol{\beta}}_{\mathrm{f}}\left(\bar{\boldsymbol{\beta}}_{\mathrm{c}}\right)}{\partial \bar{\boldsymbol{\beta}}_{\mathrm{c}}}\boldsymbol{\Sigma}_{\boldsymbol{\hat{\beta}}_{\mathrm{c}}}\frac{\partial \bar{\boldsymbol{\beta}}_{\mathrm{f}}\left(\bar{\boldsymbol{\beta}}_{\mathrm{c}}\right)}{\partial \bar{\boldsymbol{\beta}}_{\mathrm{c}}}$ parameter maps $\overline{\left(ar{oldsymbol{eta}}_{ m f}\left(ar{oldsymbol{eta}}_{ m c} ight)-oldsymbol{eta}_{ m f} ight)\left(ar{oldsymbol{eta}}_{ m f}\left(ar{oldsymbol{eta}}_{ m c} ight)-oldsymbol{eta}_{ m f} ight)^{ m T}}$

- first-order propagation-of-error from $\hat{\beta}_{\mathrm{c}}$ to $\beta_{\rm f}$

Term II: error from noise in nuisance parameter maps

- first-order propagation-of-error from $\hat{\beta}_{c}$ to $\beta_{\rm f}$
- the noise covariance of nuisance parameters
 - zero if β_c are assumed

$$\begin{split} \boldsymbol{\hat{\varepsilon}_{\hat{\boldsymbol{\beta}}_{f}}^{2} \approx \sigma_{s}^{2} \left(\mathbf{J}_{\boldsymbol{\beta}_{f}}^{T} \mathbf{J}_{\boldsymbol{\beta}_{f}} \right)^{-1} + \dots \\ & \frac{\partial \bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right)}{\partial \bar{\boldsymbol{\beta}}_{c}} \boldsymbol{\Sigma}_{\hat{\boldsymbol{\beta}}_{c}} \frac{\partial \bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right)^{T}}{\partial \bar{\boldsymbol{\beta}}_{c}} + \dots \\ & \left(\bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right) - \boldsymbol{\beta}_{f} \right) \left(\bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right) - \boldsymbol{\beta}_{f} \right)^{T} \end{split}$$

Term II: error from noise in nuisance parameter maps

- first-order propagation-of-error from $\hat{\beta}_{c}$ to $\beta_{\rm f}$
- the noise covariance of nuisance parameters
 - zero if β_c are assumed
- the average fitted parameters for given average nuisance parameters

$$\begin{split} \boldsymbol{\hat{e}_{\hat{\boldsymbol{\beta}}_{f}}^{2}} &\approx \sigma_{s}^{2} \left(\mathbf{J}_{\boldsymbol{\beta}_{f}}^{T} \mathbf{J}_{\boldsymbol{\beta}_{f}} \right)^{-1} + \dots \\ & \frac{\partial \bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right)}{\partial \bar{\boldsymbol{\beta}}_{c}} \boldsymbol{\Sigma}_{\hat{\boldsymbol{\beta}}_{c}} \frac{\partial \bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right)^{T}}{\partial \bar{\boldsymbol{\beta}}_{c}} + \dots \\ & \left(\bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right) - \boldsymbol{\beta}_{f} \right) \left(\bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right) - \boldsymbol{\beta}_{f} \right)^{T} \end{split}$$

 $\bar{\beta}_{\rm f}(\bar{\beta}_{\rm c})$

Term II: error from noise in nuisance parameter maps

- first-order propagation-of-error from $\hat{\beta}_{c}$ to $\beta_{\rm f}$
- the noise covariance of nuisance parameters
 - zero if β_c are assumed
- the average fitted parameters for given average nuisance parameters

$$\begin{split} \boldsymbol{\varepsilon}_{\hat{\boldsymbol{\beta}}_{f}}^{2} \approx \sigma_{s}^{2} \left(\mathbf{J}_{\boldsymbol{\beta}_{f}}^{T} \mathbf{J}_{\boldsymbol{\beta}_{f}} \right)^{-1} + \dots \\ \frac{\partial \bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right)}{\partial \bar{\boldsymbol{\beta}}_{c}} \boldsymbol{\Sigma}_{\hat{\boldsymbol{\beta}}_{c}} \frac{\partial \bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right)^{T}}{\partial \bar{\boldsymbol{\beta}}_{c}} + \dots \\ \left(\bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right) - \boldsymbol{\beta}_{f} \right) \left(\bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right) - \boldsymbol{\beta}_{f} \right)^{T} \end{split}$$

$$\Sigma_{\hat{\beta}_{c}} = \begin{bmatrix} \sigma_{\hat{\beta}_{c1}}^{2} & \dots & \sigma_{\hat{\beta}_{c1}\hat{\beta}_{cM_{c}}}^{2} \\ \vdots & & \vdots \\ \sigma_{\hat{\beta}_{c1}\hat{\beta}_{cM_{c}}}^{2} & \dots & \sigma_{\hat{\beta}_{cM_{c}}}^{2} \end{bmatrix}$$

$$\frac{\partial \bar{\beta}_{\rm f} \left(\bar{\beta}_{\rm c} \right)}{\partial \bar{\beta}_{\rm c}} =$$

 $\begin{bmatrix} \partial \bar{\beta}_{f1} / \partial \bar{\beta}_{c1} & \dots & \partial \bar{\beta}_{f1} / \partial \bar{\beta}_{cM_c} \\ \vdots & \vdots \\ \partial \bar{\beta}_{fM_f} / \partial \bar{\beta}_{c1} & \dots & \partial \bar{\beta}_{fM_f} / \partial \bar{\beta}_{cM_c} \end{bmatrix}$

Term II: error from noise in nuisance *parameter maps*

For the T_2 example

- compute $\sigma_{\hat{\theta}}^2$ by CRB evaluation of B₁ mapping method

$$\begin{split} \boldsymbol{\varepsilon}_{\hat{\boldsymbol{\beta}}_{f}}^{2} &\approx \sigma_{s}^{2} \left(\mathbf{J}_{\boldsymbol{\beta}_{f}}^{T} \mathbf{J}_{\boldsymbol{\beta}_{f}} \right)^{-1} + \dots \\ & \frac{\partial \bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right)}{\partial \bar{\boldsymbol{\beta}}_{c}} \boldsymbol{\Sigma}_{\hat{\boldsymbol{\beta}}_{c}} \frac{\partial \bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right)^{T}}{\partial \bar{\boldsymbol{\beta}}_{c}} + \dots \\ & \left(\bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right) - \boldsymbol{\beta}_{f} \right) \left(\bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right) - \boldsymbol{\beta}_{f} \right)^{T} \end{split}$$

$$\Sigma_{\hat{\beta}_{\rm c}} = \sigma_{\hat{\theta}}^2$$

Term II: error from noise in nuisance *parameter maps*

For the T_2 example

- compute $\sigma_{\hat{\theta}}^2$ by CRB evaluation of B₁ mapping method
- compute $T_2(\theta)$ and $M_0(\theta)$ from noiseless images
 - partial derivate estimated by finite difference approximation across $\boldsymbol{\theta}$

$$\begin{split} \boldsymbol{\varepsilon}_{\hat{\boldsymbol{\beta}}_{f}}^{2} &\approx \sigma_{s}^{2} \left(\mathbf{J}_{\boldsymbol{\beta}_{f}}^{T} \mathbf{J}_{\boldsymbol{\beta}_{f}} \right)^{-1} + \dots \\ & \frac{\partial \bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right)}{\partial \bar{\boldsymbol{\beta}}_{c}} \boldsymbol{\Sigma}_{\hat{\boldsymbol{\beta}}_{c}} \frac{\partial \bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right)^{T}}{\partial \bar{\boldsymbol{\beta}}_{c}} + \dots \\ & \left(\bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right) - \boldsymbol{\beta}_{f} \right) \left(\bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right) - \boldsymbol{\beta}_{f} \right)^{T} \end{split}$$

$$\Sigma_{\hat{\beta}_{\rm c}} = \sigma_{\hat{\theta}}^2$$

 $\frac{\partial \bar{\beta}_{f}(\bar{\beta}_{c})}{\partial \bar{\beta}_{c}} = \begin{bmatrix} \partial \bar{T}_{2} / \partial \bar{\theta} \\ \partial \bar{M}_{0} / \partial \bar{\theta} \end{bmatrix}$

Term II: error from noise in nuisance parameter maps

For the T_2 example

- compute $\sigma_{\hat{\theta}}^2$ by CRB evaluation of B₁ mapping method
- compute $T_2(\theta)$ and $M_0(\theta)$ from noiseless images
 - partial derivate estimated by finite difference approximation across $\boldsymbol{\theta}$
- if we only care about errors in fitted T_2 , term II reduces to \rightarrow

$$\begin{split} \boldsymbol{\varepsilon}_{\hat{\boldsymbol{\beta}}_{f}}^{2} \approx \sigma_{s}^{2} \left(\mathbf{J}_{\boldsymbol{\beta}_{f}}^{T} \mathbf{J}_{\boldsymbol{\beta}_{f}} \right)^{-1} + \dots \\ \frac{\partial \bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right)}{\partial \bar{\boldsymbol{\beta}}_{c}} \boldsymbol{\Sigma}_{\hat{\boldsymbol{\beta}}_{c}} \frac{\partial \bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right)^{T}}{\partial \bar{\boldsymbol{\beta}}_{c}} + \dots \\ \left(\bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right) - \boldsymbol{\beta}_{f} \right) \left(\bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right) - \boldsymbol{\beta}_{f} \right)^{T} \end{split}$$

 $\Sigma_{\hat{\beta}_c} = \sigma_{\hat{A}}^2$

 $\frac{\partial \bar{\beta}_{f}(\bar{\beta}_{c})}{\partial \bar{\beta}_{c}} = \begin{vmatrix} \partial \bar{T}_{2} / \partial \bar{\theta} \\ \partial \bar{M}_{0} / \partial \bar{\theta} \end{vmatrix}$

 $\sigma_{\hat{\theta}}^2 \left(\frac{\partial \bar{T}_2}{\partial \bar{\theta}} \right)^2$

Term III: error from bias in nuisance parameter maps

• bias in fitted parameters

$$\begin{split} \boldsymbol{\varepsilon}_{\hat{\boldsymbol{\beta}}_{f}}^{2} \approx \sigma_{s}^{2} \left(\mathbf{J}_{\boldsymbol{\beta}_{f}}^{T} \mathbf{J}_{\boldsymbol{\beta}_{f}} \right)^{-1} + \dots \\ \frac{\partial \bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right)}{\partial \bar{\boldsymbol{\beta}}_{c}} \boldsymbol{\Sigma}_{\hat{\boldsymbol{\beta}}_{c}} \frac{\partial \bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right)^{T}}{\partial \bar{\boldsymbol{\beta}}_{c}} + \dots \\ \left(\bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right) - \boldsymbol{\beta}_{f} \right) \left(\bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right) - \boldsymbol{\beta}_{f} \right)^{T} \end{split}$$

$$\bar{\beta}_{\rm f}\left(\bar{\beta}_{\rm c}\right) - \beta_{\rm f}$$

Term III: error from bias in nuisance parameter maps

• bias in fitted parameters

squared error

$$\begin{split} \boldsymbol{\varepsilon}_{\hat{\boldsymbol{\beta}}_{f}}^{2} &\approx \sigma_{s}^{2} \left(\mathbf{J}_{\boldsymbol{\beta}_{f}}^{T} \mathbf{J}_{\boldsymbol{\beta}_{f}} \right)^{-1} + \dots \\ & \frac{\partial \bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right)}{\partial \bar{\boldsymbol{\beta}}_{c}} \boldsymbol{\Sigma}_{\hat{\boldsymbol{\beta}}_{c}} \frac{\partial \bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right)^{T}}{\partial \bar{\boldsymbol{\beta}}_{c}} + \dots \\ & \left(\bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right) - \boldsymbol{\beta}_{f} \right) \left(\bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right) - \boldsymbol{\beta}_{f} \right)^{T} \end{split}$$

$$\bar{\beta}_{\rm f}\left(\bar{\beta}_{\rm c}\right) - \beta_{\rm f}$$

$$\left(\bar{\beta}_{\rm f}\left(\bar{\beta}_{\rm c}\right) - \beta_{\rm f}\right) \left(\bar{\beta}_{\rm f}\left(\bar{\beta}_{\rm c}\right) - \beta_{\rm f}\right)^{\rm T}$$

Term III: error from bias in nuisance parameter maps

• bias in fitted parameters

squared error

• again, considering only error in fitted T₂, term III is \rightarrow

$$\begin{split} \boldsymbol{\varepsilon}_{\hat{\boldsymbol{\beta}}_{f}}^{2} \approx \sigma_{s}^{2} \left(\mathbf{J}_{\boldsymbol{\beta}_{f}}^{T} \mathbf{J}_{\boldsymbol{\beta}_{f}} \right)^{-1} + \dots \\ \frac{\partial \bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right)}{\partial \bar{\boldsymbol{\beta}}_{c}} \boldsymbol{\Sigma}_{\hat{\boldsymbol{\beta}}_{c}} \frac{\partial \bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right)^{T}}{\partial \bar{\boldsymbol{\beta}}_{c}} + \dots \\ \left(\bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right) - \boldsymbol{\beta}_{f} \right) \left(\bar{\boldsymbol{\beta}}_{f} \left(\bar{\boldsymbol{\beta}}_{c} \right) - \boldsymbol{\beta}_{f} \right)^{T} \end{split}$$

$$\bar{\beta}_{\rm f}\left(\bar{\beta}_{\rm c}\right) - \beta_{\rm f}$$

$$\left(\bar{\beta}_{\rm f}\left(\bar{\beta}_{\rm c}\right) - \beta_{\rm f}\right) \left(\bar{\beta}_{\rm f}\left(\bar{\beta}_{\rm c}\right) - \beta_{\rm f}\right)^{\rm T}$$

 $\left(\bar{T}_2\left(\bar{\theta}\right) - T_2\right)^2$

T₂ Example Calculations

• Image SNR = $100, T_2 = 20-200$ ms, NE/ESP = 32/10 ms and 4/30 ms

Example Results: Precision

- image SNR = $100, T_2 = 80$ ms, NE/ESP = 32/10 ms and 4/30 ms
- accurate measures of θ (terms I and II only) or jointly fitted M₀, T₂, and θ

Example Results: Precision

- image SNR = $100, T_2 = 80$ ms, NE/ESP = 32/10 ms and 4/30 ms • accurate measures of θ (terms I and II only) or jointly fitted M₀, T₂, and θ
- if $SNR(\theta) > 1/2$ image SNR, use measure θ

Example Results: Accuracy

- image SNR = $100, T_2 = 80$ ms, NE/ESP = 32/10 ms and 4/30 ms
- noiseless calculations, bias in $\hat{\theta}$ (term III only)

ESP = 32/10 ms and 4/30 ms m III only)

Example Results: Accuracy

- image SNR = $100, T_2 = 80$ ms, NE/ESP = 32/10 ms and 4/30 ms
- noiseless calculations, bias in $\hat{\theta}$ (term III only)
- bias in fitted T₂ is smallest for large θ (and small θ bias); worse for fewer echoes

Example Results: Mean Squared Error

- maximum $\hat{\theta}$ -bias that allows reduced MSE(T₂) by measuring θ
- example results for $\theta = 150^{\circ}$ and $T_2 = 80$ ms
- If image SNR is high
 - need low $\hat{\theta}$ -bias,
 - need unbiased $\hat{\theta}$ if $SNR(\hat{\theta}) \le 1/2$ SNR(image)
- E.g., SNR(image) = 60

- maximum $\hat{\theta}$ -bias that allows reduced MSE(T₂) by measuring θ
- example results for $\theta = 150^{\circ}$ and $T_2 = 80$ ms
- If image SNR is high
 - need low $\hat{\theta}$ -bias,
 - need unbiased $\hat{\theta}$ if $SNR(\hat{\theta}) \le 1/2$ SNR(image)
- E.g., SNR(image) = 60

- maximum $\hat{\theta}$ -bias that allows reduced MSE(T₂) by measuring θ
- example results for $\theta = 150^{\circ}$ and $T_2 = 80$ ms
- If image SNR is high
 - need low $\hat{\theta}$ -bias,
 - need unbiased $\hat{\theta}$ if $SNR(\hat{\theta}) \le 1/2$ SNR(image)
- E.g., SNR(image) = 60

- maximum $\hat{\theta}$ -bias that allows reduced MSE(T₂) by measuring θ
- example results for $\theta = 150^{\circ}$ and $T_2 = 80$ ms
- If image SNR is high
 - need low $\hat{\theta}$ -bias,
 - need unbiased $\hat{\theta}$ if $SNR(\hat{\theta}) \le 1/2$ SNR(image)
- E.g., SNR(image) = 60

Summary

- Nuisance parameters affect accuracy and precision of qMRI
- Propagation of error provides a relatively easy framework to compute these effects
 - can be extended to arbitrarily complex problems
- E.g., T₂ measurement: measuring flip angle may or may not reduce MSE(T₂), depending on the accuracy and precision of the flip angle measurements
- Need better characterization of the accuracy and precision of B_1 and B_0 mapping methods